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SUMMARY 
The method of dynamic Green's function and the integral transforms are applied to investigate the etasto- 
dynamic stress intensity factor of a crack straddling an interface of a bimaterial composite. The crack which 
extends to infinity on one side is assumed to extend an arbitrary distance a on the other side of the interface. 
Anti-plane line loads are suddenly applied at time t = 0 on either side of the crack surface at arbitrary 
distances ll and/2 from the interface. The effect of the interface on the dynamic stress field near the crack 
tip is studied. It is found that the transmitted wave through the interface and reflected wave from the inter- 
face serve to increase or decrease the stress field in the vicinity of the crack tip depending on the elastic 
properties of the two materials. 

1. Introduction 

Composites are increasingly replacing conventional single materials in industrial use. 

Though they are made to tolerate a wide variety of  applied loads, the behavior of  com- 
posites containing flaws or cracks which extend f rom one medium to the other through the 
interface is not well known and the study of  the stress response in this case is of  great 

practical significance. The quantity of  theoretical interest is the stress field in the vicinity 
of  flaws or cracks. Appropriate  quasistatic models of  cracks in composites have already 
been proposed by some authors, s.ee for example Refs. [1, 2]. However, the influence of the 

bimaterial interface for the corresponding dynamic problems has not been fully explored. 
Recently, the elastodynamic problem of cracks extending f rom the interface into mate- 

rials of  a bimaterial composite is studied by Atkinson [3]. He assumed that the cracks propa- 

gate perpendicular to the interface on both sides with constant but different velocities. Since 
there is no characteristic length involved in the problem, the method of homogeneous so- 
lution using the self-similarity nature of  certain field variables has been employed in Ref. 

[3]. However, if a crack already straddles an interface of  a bimaterial composite and is 
subjected to dynamic loads, the method of  homogeneous solution cannot be applied since 
the diffracted waves will have more than one center. Such problems which involve charac- 
teristic length can be solved by a method based on dynamic Green's function. The method 
was first used by Evvard [4] and has been referred to as the method of  Evvard or the dynamic 
Green's function method, and has been subsequently employed by Kostrov [5] and Achen- 
bach [6, 7] for problems of crack propagation in single material. The method is also briefly 
discussed in Ref. [8]. The applicability of  this method for cracks in composite elastic me- 
dium has been explored recently in Ref. [9]. Some elastodynamic problems of forced 
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transient motions and interface failure using this method have been studied by Chilton [10]. 
The method of dynamic Green's function is based on solving the wave equation where 

the displacement gradient is generated by an antiplane impulsive line load applied at 
some point in the medium. Then, according to the standard Green's function theory [11], 
the displacement field may be found by superposing this fundamental solution with the 
applied traction. The solution will be obtained in the form of an integral equation. In many 
cases these resulting integral equations are very difficult to solve while in some cases, they 
can be conveniently reduced to integral equations o f  Abel's type. The procedure for the 
latter case is shown in the appendix. 

In this paper, we find the elastodynamic stress intensity factor for a crack existing in a 
bimaterial composite of two perfectly joined elastic half spaces of different elastic proper- 
ties. The model chosen is shown in Fig. 1. The crack is of semi-infinite extent in one material 
and penetrates perpendicular to the interface into the second material to a distance a. The 
composite is subjected to suddenly applied loads, which generate wave motion. An inter- 
esting question to investigate is whether the interface causes an increase or decrease in the 
dynamic stress intensity factor at the crack tip at x = a. It may be anticipated that this will 
depend crucially on the ratios of the properties of the two materials. 

Instead of analyzing the elastodynamic fields for loads applied in the medium, with a 
stress free crack, we analyze the inverse case where loads are applied on the faces of the 
crack. The two cases are related by superposition considerations. In particular, we will de- 
termine the elastodynamic stress-intensity factors at the crack tip for the case that anti- 
plane equal and opposite concentrated line loads are applied to the faces at x = - /1  and 
at x = 12, see Fig. 1. These anti-plane disturbances generate horizontally polarized wave 
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Figure 1. Pattern of wavefronts and the position of the crack tip. 
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motion in the medium. In Fig. 1, the wavefronts are drawn for the case #2 • ~1, where 
#~ (i = 1, 2) are the shear moduli of  materials 1 and 2, respectively. 

2. Formulation of the problem 

The two equal and opposite loads applied at x = - l  1 and x = 12 at time t = 0 to the 
upper and lower surfaces of the crack (see Fig. 1), generate an antiplane displacement field 
which will be antisymmetric relative to the plane y = O. As a consequence the displacement 
w vanishes for x >_ a, i.e., 

x > a: w(x ,  O, t) = O. (1) 

On the crack surfaces the concentrated loads give rise to the following boundary conditions 
for t > 0  

= ~Zo6(X + l l ) t  
"rrz [Zo f (X  -- I2)t (2) 

where 6(.) is the Dirac delta function. Equations (1) and (2) are boundary conditions for 
either the half-space y > 0 or the half-space y < 0. 

Let us consider the half-space y > 0. This half-space consists of two quarter spaces of 
different elastic solids, which are perfectly joined along the common boundary defined by 
x = 0, see Fig. 1. We use Cartesian coordinates x, y, z, where z is the out-of-plane coor- 
dinate. We denote the material properties in the regions x < 0 and x > 0 by subscripts 1 
and 2 respectively. 

The shear tractions (2) generate horizontally polarized shear motion in the z-direction 
only. The displacements w~ and wz in the z-direction are governed by the wave equations 

V2wl  = (1/c2)O2wl/Ot 2, 172w2 = (1/c2)O2w2/Ot 2 (3a, b) 

for x < 0 and x > 0 respectively. In equations (3a, b) V 2 denotes the Laplacian operator 
in the xy-plane and 

cl = (#1/p l )  ~ and c2 = ( p 2 / P 2 )  �89 (4a, b) 

are the shear wave speeds, where Pl, #2 and p~ and P2 represent shear moduli and mass 
densities in the solids 1 and 2, respectively. The relevant shear stresses are 

(Zyz)~ = #~Ow~/dy; (zxz)~ = #~awi/Ox; i = 1, 2. (5a, b) 

The problem at hand thus consists of finding solutions of equations (3a, b) satisfying the 
conditions (1) and (2), as well as the following conditions imposing continuity of the dis- 
placement and the stress at x = 0, y > 0: 

wl = w2; #~dw~/~x  = #2~w2/Ox.  (6a, b) 

In addition, the following initial conditions must be satisfied 

t < 0: w~(x, y ,  t) = Ow~(x, y ,  t)/~t = 0. (7) 
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3. Displacement fields in the composite half-space 

Let us first investigate the nature of the displacement fields in the composite half-space 
y > 0 for the case that the surface y = 0 is subjected solely to a concentrated anti-plane 
load (see Ref. [9]). No generality is lost if we assume that the' load is applied at x = /2 ,  
where 12 > 0. The boundary condition on y = 0, - oo < x < co then is 

(zyz)2 = PzOW2/SY = ZoS(X - Iz)tH(t). (8) 

For the boundary conditions prescribed above, it is convenient to apply cosine transform 
over the variable y and Laplace transform over time t. These transforms are defined as 

g*(x, y, t) = f o g(x, y, t) COS yydy, (9a) 

~(x, y,p) = f o  9(x, y, t) e-Vt dt. (9b) 

Applying first the cosine transform (9a) and then the Laplace transform (9b) and using the 
initial conditions (7) in Eq. (3a), we obtain for x < 0 

d2,~,/dx 2 _ (y2 + a2pZ),~ = 0. (10) 

Equation (10) is an ordinary differential equation, which can easily be solved to yield 

Similarly, 

where Ax 
and (6b), 

a i 

AI(V) exp [(V2 + aZp2){x]. (11) 

for medium 2 the solution satisfying the boundary condition (8) is obtained as 

A2(y)exp[-(Y z + a~p2)~x] z o 1 exp[-(V 2 + a~pZ)~[x - lz[] (12) 
2#z p2 (~2 + a~p2)~ 

and A2 are functions of y to be determined from the continuity conditions (6a) 
and a~ and a2 are slownesses defined by 

I/c,; (i = 1, 2). (13a, b) 

Applying cosine and Laplace transforms to Eqs. (6a, b) and then employing Eqs. (11) 
and (12), continuity of displacement at x = 0 gives 

z o 1 exp[-(y2 + a~p2)�89 
At(Y) - A2(7) = 2~t2 p2 (y2 + agp2)r , (14) 

while the continuity of shear stress yields 

AI(~,) = #2 (yZ + agp2){ Zo 1 exp[--(]'2 + a~p2)�89 (15) 
Pl (yz + a2p2)~ A2(y)  2pt p2 (rE + a2p2)~ 

(16) 

From (14) and (15) we obtain 

Vo exp [ -  (y2 + a~p2)~12] 
AI(Y) - pZ #1(~2 + aZp2)~ + p2(yz + a~p2)~ 
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and 

z o 1 /q(y2 + aZp2)} _ pz(y2 + aZ2p2)~ exp[_(y2 + a22p2)~121 
A2(y) = 21.t~ p2 #~(~2 + a~p2)~ + p2(~2 + a~p2)~ (~2 + a~p2)~ (17) 

Substituting Eq. (16) into Eq. (11) and taking the inverse cosine transform, we obtain 

wl = - -  Al(y ) exp [(~2 + a~p2)~x] cos ~,yd~. (18) 
7~ 

An analogous equation can be written for ~2. 
The inversion of the one-sided Laplace transform can be carried out in a convenient 

manner by means of the Cagniard-de Hoop method. This method is discussed in Ref. [8]. 
In the next section we will need the displacement at the surface y = 0. Introducing a new 
variable ~ by the substitution 

= p~ 

we obtain for y = 0, x > 12 

~2 = (~2)~ + (~2)a 

where 

(19) 

(20) 

Zo 1 [,co #1(~2 + a~)~ - #2(~2 + a~)~ exp[_p(~2 + a~)�89 + 12)] 
(~2 ) ,  

7r#2 p2 J o  #1(~2 + a~)~ + #2(~2 + a~)r (~2 + a~)r d~ 

(21) 
and 

(~2)a = 
v o 1 1.oo exp [_p(~2 + a2)~(x _ 12)] 

~ctz 2 p2 J 0  (if2 + a~)~ 
(22) 

In Eq. (20), (w2)d represents the displacement field due to the cylindrical wave directly ema- 
nating from the source point x = 12, while (w2)r represents the displacement field due to 
the reflected wave from the interface. Similarly, the Laplace transform of the displacement 
for y = 0, x < 0 may be written as 

_ 2"% 1 I f  exp{-P[(~2 + a})~-12 - ( ( 2  + a~)�89 (~1), 

where (wt) t is the displacement field due to the transmitted wave across the interface. 
To obtain expressions for the displacement fields, it is found convenient to apply inverse 

Laplace transforms to the integrals in Eqs. (21), (22) and (23) and to the ratio lip 2, sepa- 
rately, and then apply the convolution theorem. In using the Cagniard method to evaluate 
the inverse Laplace transforms to the integrals, a change of variables for ~ must be intro- 
duced in such a manner that the inverse Laplace transform of the integral over the new 
integration variable can be obtained by inspection, using the following property of  the one- 
sided Laplace transform: 

I7 .L #-~ e-Vt f ( t )dt  = f( t)H(t  - tl). (24) 
1 
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We will first consider the integral (wz)a, Eq. (22). The desired change of variable in the 
(-plane is defined by 

(~2 + a2)�89 _ t2) = t. (25) 

By employing Eq. (25) and using Eq. (24), the inverse Laplace transform of the integral 
in Eq. (22) can easily be obtained. Subsequently using the convolution theorem we find for 
t > ( x  - t 2 )a2  

f (  (t - u)du 
_ = [ . 2  _-(-x _ 

"CO x--12)a2 

t + [t 2 -- (X -- 12)2a2] �89 
= t in  -- It 2 -- (x -- 12)2a2] *. (26) 

( x  - 12)a2 

As noted earlier (wz)a(x, O, t) for x > 12 is the displacement field due to the cylindrical 
wave emanating directly from the applied load and it equals the solution in the case of a 
single material. 

For the integral in (~2),, the appropriate change of variables is 

((Z -t- a2)~(x "Jr 12) : t. (27) 

Equation (21) then yields 

f (  (t - u)F(u)du rc#_~_z (w2)r = [u f ~ ( x  + ~ ] §  (28) 
x +12 )az T o 

where 

F(u) = I11 [uz + (x + I2)2(al z - azZ)] �89 - p2u (29) 
/q[u 2 + (x + I2)2(al z - a~)] �89 + #2 u" 

To evaluate the integral in Eq. (28) we consider an approximation for the function F(u) 
which is valid when 

c2t -- (X q- 12)a2 '~ 1. (30) 

This will be true for a point just behind the reflected wavefront. When this condition holds 
we may write 

F ~ # ta t  - ltza2 (31) 
#1at + #2a2 

and the integral in Eq. (28) may be evaluated to yield for t > (x + l)a2 

r c # ~ ( w 2 ) ' = # l a l - - # 2 a 2 { t l n t + [ t 2 - - ( x + 1 2 ) 2 a 2 ] ~ - - [ t 2 - - ( x + l z ) 2 a 2 ] � 8 9  " z  o i~:al Jr-/./2a2 (x -a t- 12)a2 (32) 

This expression represents the wave motion reflected from the interface at x = 0. It can 
be noted that in the approximation implied by (30), the reflected wave has the form of 
a wave emanating from a concentrated line load at x - -12, with a magnitude modified 
by the constant given by Eq. (31). 
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It remains to investigate 5r from Eq. (23). The appropirate change of vari- 
ables is 

(~z + a~)~12 _ (~2 + aZl)~x = t. (33) 

Then Eq. (23) can be rewritten as 

7z ( w l ) t _  1 f ,  ~ 
"co p2 e-Pt G[((t)] dt (34) 

212--alx 2 

where 

1 (~2 + a2)~(~2 + a2)~ 1 
G(0 = #i(~ 2 + a2)~_ + #2(~ 2 + a22) ~ (~2 + a2)~ _ x(~2 + azZ)~ ~-" (35) 

The inverse Laplace transform of Eq. (34) may be expressed in the form 

(wl), 
f (t - u)G(u)du. (36) 

7~ 

T~ 2/2--alx 

To evaluate the integral in Eq. (36), we observe that the integrand G(0, given by Eq. (35), 
can be simplified for the case ( ,-~ 0 (this will be true for the point just behind the trans- 
mitted wave) to the following form: 

x2 + 12 _ a2 al 2 
ala2 ~ + xlz 

a2 ] _l I 
G(() ", # ia i  + # 2 a 2  lzal __ xa2 i t  2 _ (alx  _ a212)2]_ ~ . (37) 

The equation (36) with Eq. (37) then yields 

[ x 2 + 1 2 _ ( a ~  + a-~2 )x121 ~ 
n (wl) t aia z t~a 
2 "c o # l a l  + # 2 a 2  lzai -- xa2 

{ t +  [ t 2 - ( a i x - a 2 1 2 ) 2 ] ~  } 
x tin - [ t  2 - (alx  - a 2 / 2 ) 2 ]  r . (38) 

alx  -- a2l 2 

Equation (26), (32) and (38) thus give the displacement fields in the medium for the case 
when an anti-plane line load is applied at x = [2. Similar expressions for the displacement 
fields may also be easily worked out when an anti-plane line load is applied at x = - l~.  

4. Dynamic stress field in the vicinity of the crack tip 

Let us now return to the original problem namely the semi-infinite crack straddling the 
interface between the two elastic half-spaces, Fig. 1, and consider the displacement for 
x > a. According to Eq. (1), the total displacement must vanish for x > a. To obtain a 
vanishing displacement we will apply displacements equal and opposite to (W2)d, (W2)r and 
(w2)t which are defined in Eqs. (26), (32) and (38) (with the parameters suitably changed). 
These super-imposed displacements generate shear stresses at y = 0, x > a, which will be 
computed in the sequel. 
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The wave propagation problems with -(Wz) a, - ( w 2 )  r and -(Wz)r applied in the region 
x > a are solved by a method which is based on the use of a Green's function. This method 
has been used by Kostrov [5] and Achenbach [6, 7] for problems of crack propagation. It 
is explained in considerable detail in Ref. [8]. If the surface y = 0 is subjected to a dis- 
tribution of the form (zyz)2 = fix,  s), where s = c2 t the displacement field w 2 in the half 
plane y _>_ 0 is of the form (see Achenbach [8] p. 360) : 

w2(x, y, s) . . . .  d2dg. (39) 
G[,l 2 R 

In Eq. (39) S is that part of the fig-plane which falls inside the cone defined by 

and 

(S -- S) -- [ (X- -  ~)2 -k-y2]�89 ~ 0, S --> g ~> 0 (40) 

R 2 = (s  - g)2 _ (x  - ~)2 _ t;2. (41) 

The region defined by Eq. (40) is a rather complicated area, being bounded in general 
by a hyperbola and a number of straight lines. For the case y = 0, the region of integration 
S reduces to a triangular region in the ff~-plane and moreover the integrand in Eq. (39) 
simplifies significantly. The integral which is obtained from Eq. (39) by setting y = 0 can 
then be simplified considerably by introducing the following characteristic coordinates in 

the 2g-plane: 

= (g - 2)/x/2 , f / =  (g + ~)/x/2. (42) 

By substituting Eq. (42) into Eq. (39) and setting y = 0, we find that the expression for the 
displacement field may be written as 

l j'f d dO. (43) We(i, t/) = =#2~j2 ({ _ ~ - (q  2__ q)~ 

Equation (43) gives the desired relationship between the displacement and a distribution 
of surface tractions. I f  the stresses are known over a particular region, Eq. (43) will enable 
one to find the corresponding displacements and alternately, if the displacements are known 
over a given region, Eq. (43) will give an expression for the tractions on the same region. 
Thus for our case the displacement fields for x > a are given by Eqs. (26), (32) and (38) 
(with the parameters suitably changed) and the relevant stress fields can then be obtained 

by inverting Eq. (43). 
Let us first consider the displacement field (w2)a given by Eq. (26). As noted earlier, this 

displacement is due to the cylindrical wave emanating directly from the source point x =/2 .  
By setting up a new variable, x' = x - lz and employing the characteristic coordinates as 
defined by (42), the displacement field (w2)a can be written as 

"Coa2 { (~)~+01) ~ } 
(wz)a - (2)~rc~z 2 (4 + t/)In (r/) ~ -- (~)~  2(~)~(t/) ~ . (44) 

Now consider a position defined by x 1, sl or {1, q, in the region x >= a. At this point 
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the displacement field will be equal and opposite to that given by Eq. (44). The relevant 
stress field can then be expressed as 

f i '  d~ ~ f "  (~Y~)2a(~'~/) dFl=(2)~n#2(W2)a(~x, ql). (45) 
(~1 -~ ~) +~/2(a-12) (~1 -- ~)~ 

Equation (45) is an integral equation of the Abel type and can be inverted (see Appendix) 
to yield 

2zoa2 
(zrz)za = - n[q ~ (2)6(a lz)] = [(2)~-(a- 12)1 ~ - ~  (46) - - - '~ r / - ~ "  

In terms of the coordinates x and t, the stress is 

" , e 2 t  - -  X + l 2 
= - - % ( a  - 1 2 F  

nc2(x - a) ~ x - 12 (47) 

In the vicinity of the crack tip, shear stress due to the cylindrical wave emanating directly 
from the source point x = la thus follows from Eq. (47) 

(zr=)g = - K a / ( x  - a) ~ (48) 

where 

K a - 
Zo czt - a +12 

nc2 (a -- 12) ~ 
(49) 

To compute the shear stress generated in the region due to the displacement field - (w2),, 
we observe that the displacement field has the same analytical form due to a wave ema- 
nating from the point x = -12 but multiplied by a constant given by Eq. (31). This wave 
propagation problem is again similar to the one above and yields a shear stress field (Zrz)~ 
in the vicinity of the crack tip in the following form: 

(zrz)~ = - K , / ( x - a )  ~ (50) 

where 

~'0 # 2 e l  - -  # 1 e 2  c 2 t  - a - l 2 
K ,  = - -  - ( 5 1 )  

nC 2 #2Cl -~- #1C2 (a --}- 12) ~ " 

It remains to investigate the shear stress (zr~)~ in the vicinity of the crack tip due to the 
transmitted wave across the interface from material 1 to material 2. The displacement field 
in the medium 2 due to this transmitted wave follows from Eq. (38) and it is of the form 

X 2 "]- l{ + + xl ,  
n (W2) ' ala  2 -~1 a2 ] d 

2 z 0 /qa  1 + 122a 2 l la 2 + xa 1 

{ t +  [ t z - ( a 2 x + a J * ) 2 ] ~  } 
x tln -- It z -- (azx + afll)2] ~ . (52) 

azx + all~ 
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By using a new variable x' = x + llal/a 2 and employing the characteristic coordinates as 
defined by Eq. (42), the displacement field due to the transmitted wave can be expressed as 

W2)  t "~ 
(2)~'Co a] 1 

#aaa '}-~2a2 I (2)~/, ( a 2  aA .'~] ~- 
1 + t l - {  a~ a 2 / 3  

x +  )ln _ + (53)  

To make the displacement field vanish ahead of the crack tip, we apply the equal and 
opposite displacement fields of Eq. (53). The relevant shear stress (zy=)~ can then be ob- 
tained from Eq. (43). The inversion of the integral equation (43) for the transmitted wave 
part is very difficult because of the term 

(2)~ll ( a z  al 
1 + q _ ~ \ a, a2 

in Eq. (53). To get an insight of the effect of this transmitted wave on the stress field in the 
vicinity of the crack tip, we assume that II ~ a. With this assumption, the terms inside the 
square bracket are expanded to yield a displacement field 

(w2)' "~ n #lat  + #2a2 (2)~(q - ~) al 

~(~ + q)ln (~)~ +-- (t/)~ 2(~)~0/)~ (54) • [ (~)~ ( ~ ) - ~ )  

The corresponding shear stress (Ty=)~ can then be obtained by following the analysis before 
and we find 

#z%a~ 1 

rc[/~lal + I~za2] r / -  ~ -  (2) ~ a + - - l i  
a2 

a2 / J  q - r 

al 

- (2)=/i ~ ) (q - 

a2 ~)2 [ (2)~(  a +  al ]_l 

(55) 
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In terms of the coordinates x and t, the expression (55) becomes 

('Cyz)t2 ,~, 
~2ToCl 

7ZC2[ktlC 2 + #2Ct] 

f C2 
" c 2 t  - -  X l 2 

1 , .  
a ' ;  2 a + - - I  1 - - -  

(x 
- I cl x + e21~cl 

C2 C2 / 
c 2 t  - -  x - -  - -  I t x - 2a - - -  I i 

l i  ( e l  c2 ) el  el  

x + - - I  1 a + - - l l  
e 1 C 1 

In the vicinity of the crack tip, shear stress due to the transmitted wave from material t 
to material 2 thus follows from Eq. (56): 

(~yz )~  = - -  K t / ( x - -  a) i (57) 

w h e r e  

K t  = - 

e2 / / c2 
e2t - a - - -  11 ez t  - a - - -  l 1 

/tzz~ 2 el It ct e2 et 
( c2 ) ~ + ~ -  c2 c 1 n c 2 [ t l l e 2  + fl2Cl] a + - - l  t 

ci 
02 )k 

a + - - I  t 
el 

(58) 

It can be seen that Eq. (58) is similar to Eq. (48) for/~l = P2 as one would expect. 
It is also to be noted that the expressions (50) and (57) are valid for points just behind 

the reflected and transmitted wave fronts respectively. To superimpose all the stress fields 
in the vicinity of the crack tip, they should arrive at the same time t to the crack tip. It is 
therefore assumed that It and l 2 are so chosen that both the reflected and transmitted wave- 
fronts reach the crack tip at the same time. The total shear field in the vicinity of the crack 
tip due to the anti-plane line loads at x = - I t  and x = /2 can then be written as 

(zyz) 2 = - K / ( x  - a) ~ (59) 

where 

K = 
7ze 2 (a + 12) 3 (a 12) 4 + - # t e 2 + p 2 e t  2 c2 c2 cl 

e2t - a - lz ) 
x (a  +--/~-( j~. (60) 

5.  C o n c l u s i o n  

The intensity factor K is plotted versus c2t /a  for some values of  12/a, P2/#I and #1/]/2 in 
Figs. 2 and 3 keeping Pt = P2. The figures indicate that the bimaterial interface has a sig- 
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Figure 2. The stress intensity factor versus c2t/a for &/a = 0.3. 

1,36 

nificant effect on the stress intensity factor at the crack tip. The contribution of the trans- 
mitted and reflected waves from the interface serves to decrease or increase the stress at 
the crack tip. The sign of the change depends critically on the material properties of the 
media. The stress intensity factor is decreased if the crack tip is in the softer material and 
vice versa. Thus by suitably choosing materials with proper ratios of material properties 
one can in principle control to a certain extent the stresses developed in the vicinity of the 
crack tip and thus reduce the chances of material failure. 
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Appendix 

Consider an integral equat ion o f  the Abel type 

f~ ' du f , i  I z(u, v) (ul - u) ~- (vl - v) ~ dv =f(u l ,  vl) (A.1) 

where f (u l ,  vl) is a known function of  u 1 and v 1 and z(u, v) is the unknown function to be 
determined. This class o f  integral equations can be solved in closed form. 

Multiplying both  sides o f  (A.1) by (u' - ul) -~ and integrating over ut, we have 

(-~ - uO ~ dul = (u' - - u l )~  ( u l  - -  u )~  (v l  - v)~ dr. (A.2) 
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Let us define a function h(u, v~) as follows: 

f[ ~ ~ (u ,  v )  
h(u,/31) = (U1 -- V) ~ dr. (A.3) 

In view of (A.3), (A.2) can be written as 

f ;  ' f(b/l' vl) fa "(/,/, Ul)~. I :  (Ul __ L/)2 
( u ' - ~ d u l =  ~" d< 1 ' h(u,~l) 
. . . . . . .  _ ~  du. (A.4) 

By interchanging orders of integration, we can write (A.4) in the form 

(u-;-  ~)~- dul = h(u, v O d u  (u' - u,)~(u~ - u) < 

The integral on u s at the right hand side can be evaluated (see Ref. [12]) and we find 

( ~  ~)1) ~ du 1 = Tc h(u, Vl)dU. (A.6) 

We now differentiate (A.6) with respect to u' to get the relation between -c a n d f  [see equa- 

tion (A.3)]: 

0 ~" f ( u l ,  v , )  dul  = zc (v l  - v) ~ dr. (A.7) 

Multiplying both sides of  (A.7) by (v' - vl) -~ and integrating with respect to v~, we have 

7 7 '  (7-7~)-~  du~ (~' ~ ;~)~ - ~ ( 7 , -  ~)# d~ (~' _ ~ , )<  

By interchanging orders of  integration, we can write 

- - - -  ~ du ,  = ~ ( u ' , v ) d v  
(v' - v0 k~u '  ja (U'-- U~)~ (V' �9 , , - -  V~) (V~ - -  V)~ 

ov 
= ~2j, ,  ,(u', v)dv. (A.8) 

Dropping the primes in (A.8) and differentiating both sides by v, we obtain the solution of 

the integral equation (A.1) in the following form 

1 c3 ~ ~ f ( u ~ ,  v l )  d u t  - - . (A.9) 
~ ( u ,  v)  - -  ~ & 7 u  ( u  - u l ) ~  (v  - v ~ ) ~  
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